High quality polyacrylic acid modified multifunction luminescent nanorods for tri-modality bioimaging, in vivo long-lasting tracking and biodistribution.
نویسندگان
چکیده
Polyacrylic acid (PAA) modified NaYF4:Gd/Yb/Er upconversion nanorods (denoted as PAA-UCNRs) are demonstrated for tri-modal upconversion (UC) optical, computed X-ray tomography (CT), and magnetic resonance imaging (MRI). The hydrophilic PAA-UCNRs were obtained from hydrophobic oleic acid (OA) capped UCNRs (denoted as OA-UCNRs) using a ligand exchange method. The as-prepared UCNRs with a hexagonal phase structure present high monodispersity. These PAA-UCNRs are successfully used as ideal probes for in vivo UC luminescence bioimaging and synergistic X-ray and UC bioimaging. Moreover, X-ray CT imaging reveals that PAA-UCNRs can act as contrast agents for improved detection of the liver and spleen. In addition, a significant signal enhancement in the liver is observed in in vivo MRI, indicating that PAA-UCNRs are ideal T1-weighted MRI agents. More importantly, in vivo long-term tracking based on these PAA-UCNRs in the live mice and the corresponding ex vivo bioimaging of isolated organs also verify the translocation of PAA-UCNRs from the liver to the spleen, and the observed intense UC signals from the feces reveal the biliary excretion mechanism of these UCNRs. These findings contribute to understanding of the translocation and potential route for excretion of PAA-UCNRs, which can provide an important guide for the diagnosis and detection of diseases based on these UCNRs.
منابع مشابه
Rare-Earth Doped Particles as Dual-Modality Contrast Agent for Minimally-Invasive Luminescence and Dual-Wavelength Photoacoustic Imaging
Multi-modal imaging is an emerging area that integrates multiple imaging modalities to simultaneously capture visual information over many spatial scales. Complementary contrast agents need to be co-developed in order to achieve high resolution and contrast. In this work, we demonstrated that rare-earth doped particles (REDPs) can be employed as dual-modal imaging agents for both luminescence a...
متن کاملLong-term biodistribution in vivo and toxicity of radioactive/magnetic hydroxyapatite nanorods.
Although nanoscale hydroxyapatite [Ca10(PO4)6(OH)2; HA] has been widely investigated as a carrier in the delivery of drugs, genes, or siRNA, the in vivo toxicity of nanoscale HA is not clear and the long-term dynamic distribution in vivo has not hitherto been visualized. In this work, gadolinium-doped HA nanorods (HA:Gd) with an r1 value of 5.49 s(-1) (mm)(-1) have been prepared by a hydrotherm...
متن کاملSustainable, Rapid Synthesis of Bright-Luminescent CuInS2-ZnS Alloyed Nanocrystals: Multistage Nano-xenotoxicity Assessment and Intravital Fluorescence Bioimaging in Zebrafish-Embryos
Near-infrared (NIR) luminescent CuInS2-ZnS alloyed nanocrystals (CIZS-NCs) for highly fluorescence bioimaging have received considerable interest in recent years. Owing, they became a desirable alternative to heavy-metal based-NCs and organic dyes with unique optical properties and low-toxicity for bioimaging and optoelectronic applications. In the present study, bright and robust CIZS-NCs have...
متن کاملRadiopaque tantalum oxide coated persistent luminescent nanoparticles as multimodal probes for in vivo near-infrared luminescence and computed tomography bioimaging.
The design and fabrication of multimodal imaging nanoparticles is of great importance in medical diagnosis. Here we report the fabrication of core-shell structured Zn2.94Ga1.96Ge2O10:Cr(3+),Pr(3+)@TaOx@SiO2 nanoparticles for persistent luminescence and X-ray computed tomography (CT) imaging. Persistent luminescent nanoparticles Zn2.94Ga1.96Ge2O10:Cr(3+),Pr(3+) were used as the core to provide n...
متن کاملRadiolabeling and Biodistribution of new dual modality nanoparticle probe in Nuclear Medicine
Introduction: Dual-modality contrast agents, such as radiolabeled nanoparticles, are promising candidates for a number of diagnostic applications, namely SPECT imaging with MR imaging. So the aim of study was evaluating potential of Chitosan-Coated Magnetic Nanoparticles(SPION) labeled with 99mTc as new Dual-modality probes for liver Imaging. Materials and Methods:</st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 7 2 شماره
صفحات -
تاریخ انتشار 2015